468 research outputs found

    Access and Definition: Exploring how STEM Faculty, Department Heads, and University Policy Administrators Navigate the Implementation of a Parental Leave Policy

    Get PDF
    Access and Definition: Exploring how STEM Faculty, Department Heads and University Policy Administrators Navigate the Enactment of a Parental Leave Policy A key feature in various reports exploring women’s persisting underrepresentation in STEM faculty positions in the US is the need to disseminate policy information to all stakeholders involved in issues relating to women STEM faculty underrepresentation and retention. Indeed, the National Academies of Science Beyond Barriers and Bias: Fulfilling the Potential of Women Academic Science and Engineering (2007) and the AAUW’s Why so Few?(2010) identify institutional policies, like parental leave, as a way to address an outmoded institutional structure that is increasingly at odds with the experiences of all faculty. We have undertaken a deep, comprehensive and systematic study of one such policy at one Midwestern institution, exploring the recently instituted parental leave policy that allows women and men faculty and staff to take a paid leave after the birth or adoption of a child. The study uses Dorothy Smith’s institutional ethnography as a method to examine how people’s everyday real world experiences are mediated by textual documents (here the parental leave policy). We interviewed eligible STEM faculty, STEM department heads and university policy administrators to understand how the policy was being enacted or not in the everyday circumstances of STEM faculty and how other university members jointly navigate this process.We have presented prior work at ASEE 2011 on this data; our new paper will delve deeper into two select themes: the difficulty STEM faculty experienced in accessing the policy to meet their needs; and the challenges administrators had at understanding the exact definition of what the policy offered faculty. An emerging theme is that issues of access and definition seem to vary across STEM departments. With our focus on this access and understanding, we integrated our analysis with the work of sociologist Manuel Castells (2000) who examines flows of information between and within networks of people (here we focus on within networks, specifically departmental networks and the larger university network). By using this framework we can examine the different network structures and flows of information within departments which are nested within a larger university network. Disseminating information and coordinating action to address these ongoing issues is a complex problem as evinced by the findings in our initial study (2010). Combining institutional ethnography’s ability to reveal how organizational policy affects how people interact about and choose to enact or not enact a policy with Castells work on flows of information within networks stands to advance our collective understanding of access and understanding of these sorts of policies and suggest routes to improve both for STEM faculty. Findings can offer illustrative lessons about how these processes operate potentially informing other instances of similar policy introduction and maintenance. Further study of this policy comes at a time where broad changes in family friendly policy at NSF have emerged on the horizon; thus this study also offers a benchmark against which to contrast once these larger policy changes have come into effect

    Highly indistinguishable single photons from incoherently and coherently excited GaAs quantum dots

    Full text link
    Semiconductor quantum dots are converging towards the demanding requirements of photonic quantum technologies. Among different systems, quantum dots with dimensions exceeding the free-exciton Bohr radius are appealing because of their high oscillator strengths. While this property has received much attention in the context of cavity quantum electrodynamics, little is known about the degree of indistinguishability of single photons consecutively emitted by such dots and on the proper excitation schemes to achieve high indistinguishability. A prominent example is represented by GaAs quantum dots obtained by local droplet etching, which recently outperformed other systems as triggered sources of entangled photon pairs. On these dots, we compare different single-photon excitation mechanisms, and we find (i) a "phonon bottleneck" and poor indistinguishability for conventional excitation via excited states and (ii) photon indistinguishablilities above 90% for both strictly resonant and for incoherent acoustic- and optical-phonon-assisted excitation. Among the excitation schemes, optical phonon-assisted excitation enables straightforward laser rejection without a compromise on the source brightness together with a high photon indistinguishability

    In silico investigation of a KCNQ1 mutation associated with short QT syndrome

    Get PDF
    Short QT syndrome (SQTS) is a rare condition characterized by abnormally ‘short’ QT intervals on the ECG and increased susceptibility to cardiac arrhythmias and sudden death. This simulation study investigated arrhythmia dynamics in multi-scale human ventricle models associated with the SQT2-related V307L KCNQ1 ‘gain-of-function’ mutation, which increases slow-delayed rectifier potassium current (IKs). A Markov chain (MC) model recapitulating wild type (WT) and V307L mutant IKs kinetics was incorporated into a model of the human ventricular action potential (AP) for investigation of QT interval changes and arrhythmia substrates. In addition, the degree of simulated IKs inhibition necessary to normalize the QT interval and terminate re-entry in SQT2 conditions was quantified. The developed MC model accurately reproduced AP shortening and reduced effective refractory period associated with altered IKs kinetics in homozygous (V307L) and heterozygous (WT-V307L) mutation conditions, which increased the lifespan and dominant frequency of re-entry in 3D human ventricle models. IKs reductions of 58% and 65% were sufficient to terminate re-entry in WT-V307L and V307L conditions, respectively. This study further substantiates a causal link between the V307L KCNQ1 mutation and pro-arrhythmia in human ventricles, and establishes partial inhibition of IKs as a potential anti-arrhythmic strategy in SQT2

    Microstructure formation in electrodeposited Co-Cu/Cu multilayers with GMR effect: influence of current density during the magnetic layer deposition

    Get PDF
    The influence of the current density applied during the deposition of the magnetic layers on the microstructure formation in electrodeposited Co-Cu/Cu multilayers and on their giant magnetoresistance (GMR) was investigated using a combination of magnetoresistance measurements, wide-angle and small-angle X-ray scattering, high-resolution transmission electron microscopy, atomic force microscopy and chemical analysis. The magnetoresistance measurements revealed that a reduction of the current density stimulates a transition from the formation of the magnetic layers with predominantly ferromagnetic character to the formation of superparamagnetic regions. As based on electrochemical considerations, it was supposed that such a change in the magnetic properties can be caused by an increased amount of Cu codeposited with Co at low current densities. It turned out from the structural studies that a pronounced segregation of Co and Cu occurs at low current densities. In accordance with their very low mutual solubility at room temperature, no atomic scale intermixing of Co and Cu could be detected. The segregation of Cu and Co was related to the fragmentation of the magnetic layers, to the enhancement of the local lattice strains, to the increase of the interface corrugations, to the partial loss of the multilayer periodicity and finally to the formation of Co precipitates in the Cu matrix

    Degradation Kinetics of Lignocellulolytic Enzymes in a Biogas Reactor Using Quantitative Mass Spectrometry

    Get PDF
    The supplementation of lignocellulose-degrading enzymes can be used to enhance the performance of biogas production in industrial biogas plants. Since the structural stability of these enzyme preparations is essential for efficient application, reliable methods for the assessment of enzyme stability are crucial. Here, a mass-spectrometric-based assay was established to monitor the structural stability of enzymes, i.e., the structural integrity of these proteins, in anaerobic digestion (AD). The analysis of extracts of Lentinula edodes revealed the rapid degradation of lignocellulose-degrading enzymes, with an approximate half-life of 1.5 h. The observed low structural stability of lignocellulose-degrading enzymes in AD corresponded with previous results obtained for biogas content. The established workflow can be easily adapted for the monitoring of other enzyme formulations and provides a platform for evaluating the effects of enzyme additions in AD, together with a characterization of the biochemical methane potential used in order to determine the biodegradability of organic substrates

    Morphological and genetic diversity of maize landraces along an altitudinal gradient in the Southern Andes

    Get PDF
    Maize (Zea mays ssp. mays) is a major cereal crop worldwide and is traditionally or commercially cultivated almost all over the Americas. The northwestern region of Argentina (NWA) constitutes one of the main diversity hotspots of the Southern Andes, with contrasting landscapes and a large number of landraces. Despite the extensive collections performed by the “Banco Activo de Germoplasma INTA Pergamino, Argentina” (BAP), most of them have not been characterized yet. Here we report the morphological and molecular evaluation of 30 accessions collected from NWA, along an altitudinal gradient between 1120 and 2950 meters above sea level (masl). Assessment of morphological variation in a common garden allowed the discrimination of two groups, which differed mainly in endosperm type and overall plant size. Although the groups retrieved by the molecular analyses were not consistent with morphological clusters, they showed a clear pattern of altitudinal structuring. Affinities among accessions were not in accordance with racial assignments. Overall, our results revealed that there are two maize gene pools co-existing in NWA, probably resulting from various waves of maize introduction in pre-Columbian times as well as from the adoption of modern varieties by local farmers. In conclusion, the NWA maize landraces preserved at the BAP possess high morphological and molecular variability. Our results highlight their potential as a source of diversity for increasing the genetic basis of breeding programs and provide useful information to guide future sampling and conservation efforts.EEA PergaminoFil: Rivas, Juan Gabriel. Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Gutiérrez, Ángela V. Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Defacio, Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Recursos Genéticos; ArgentinaFil: Schimpf, Jorge. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; ArgentinaFil: Vicario, Ana L. Instituto Nacional de Semillas (INASE). Laboratorio de Marcadores Moleculares y Fitopatología; ArgentinaFil: Hopp, H. Esteban. Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Hopp, H. Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Lia, Veronica V. Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Lia, Veronica V. Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin

    Characterization of the KATRIN cryogenic pumping section

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to determine the effective anti-electron neutrino mass with a sensitivity of 0.2 eV/c2^2 by using the kinematics of tritium β\beta-decay. It is crucial to have a high signal rate which is achieved by a windowless gaseous tritium source producing 1011^{11} β\beta-electrons per second. These are guided adiabatically to the spectrometer section where their energy is analyzed. In order to maintain a low background rate below 0.01 cps, one essential criteria is to permanently reduce the flow of neutral tritium molecules between the source and the spectrometer section by at least 14 orders of magnitude. A differential pumping section downstream from the source reduces the tritium flow by seven orders of magnitude, while at least another factor of 107^7 is achieved by the cryogenic pumping section where tritium molecules are adsorbed on an approximately 3 K cold argon frost layer. In this paper, the results of the cryogenic pumping section commissioning measurements using deuterium are discussed. The cryogenic pumping section surpasses the requirement for the flow reduction of 107^7 by more than one order of magnitude. These results verify the predictions of previously published simulations

    Time-dependent simulation of the flow reduction of D2 and T2 in the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to measure the effective electron anti-neutrino mass with an unprecedented sensitivity of 0.2 eV/c², using β-electrons from tritium decay. Superconducting magnets will guide the electrons through a vacuum beamline from the windowless gaseous tritium source through differential and cryogenic pumping sections to a high resolution spectrometer. At the same time tritium gas has to be prevented from entering the spectrometer. Therefore, the pumping sections have to reduce the tritium flow by at least 14 orders of magnitude. This paper describes various simulation methods in the molecular flow regime used to determine the expected gas flow reduction in the pumping sections for deuterium (commissioning runs) and for radioactive tritium. Simulations with MolFlow+ and with an analytical model are compared with each other, and with the stringent requirements of the KATRIN experiment
    corecore